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SEPARATION SCIENCE AND TECHNOLOGY, 20(2 8 3), pp. 85-99,1985 

Concentration Maxima in Ternary Distillation at 
Total Reflux 

GALEN A. GRIMMA JR 
PROCESS ENGINEERING-SEPARATIONS, ENGINEERING-PRODUCTS 
SHELL OIL COMPANY 
HOUSTON, TEXAS 77001 

Abstract 

For a ternary fractionation system at total reflux, a procedure has been developed 
which predicts whether or not the component of intermediate volatility will achieve 
a concentration maximum at an intermediate location in the column rather than in 
the top or bottom product stream. Further, the value and location of any such 
maxima are analytically defmed for a fured feed and separation. Finally, the 
maximum value of the concentration maximum and its location are given for a fixed 
feed and column. 

It is well-known that, in multicomponent distillation, components of 
intermediate volatility may or may not exhibit concentration maxima at 
intermediate points in a fractionation column rather than in the top or 
bottom product. Often these maxima are of little interest, but sometimes 
they are important to the design and operation of the column. For example, 
it may be necessary for the column to develop a liquid concentration profile 
of a component whose presence is required to enhance the relative volatility 
between the key components so that the desired separation between them 
can be achieved. Perhaps a trace component in the feed may react with 
other feed components if present in large concentration on the column 
trays. Such a component may also be corrosive, explosive, or otherwise 
hazardous. Examples include the potentially dangerous buildup of vinyl 
acetylene in C4 hydrocarbons in the stripping section of a butadiene unit 
finishing column (3). Thus, in some cases it may be desirable to be able to 
predict whether or not a given component will display a concentration 
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86 GRIMMA 

maximum in a specific system and, if so, the value of that maximum and its 
location in the column. 

There has apparently been little work done on this subject as useful 
literature references are surprisingly sparse. Asano and Fujita (I) presented 
a broad and general mathematical treatment for multicomponent systems 
at partial and total reflux, but, as its title suggests, the work to be presented 
here will be much narrower in scope. 

At this point it is helpful to define several terms which will be needed in 
further discussion. 

S(min) is the total number of equilibrium stages required (at total reflux) 
to achieve the specified separation of the key components. 

DRQ is the distribution ratio of component I .  It is the ratio of the moles 
of Z in the top product (0) to the moles of I in the bottom product (B). 

DR(Z) = D(I) /B(Z)  (1) 

R(Z) is the recovery fraction of component Z in the top product. 

Since 

D(I )  + B(Z) = F(Zj (3)  

The Fenske (2) equation, derived for total reflux conditions, is then given 
by 

In [a(l,L)I 
S(min) = 

From Eq. ( 5 )  it follows that 

In this work only the liquid phase is considered, but we note that the 
equations which will be derived apply to the vapor phase as well. Stages will 
be counted from the bottom up, with the bottom stage designated as Stage 
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CONCENTRATION MAXIMA IN TERNARY DISTILLATION 87 

1 .  It is assumed that X(l)  and K ( 0 ,  the vapor-liquid equilibrium ratio, are 
continuous functions of stage number, not step functions as in stage-by- 
stage calculations. Stage number thus can take any positive value, rather 
than only integer numbers. The term “column” is taken to include any 
reboiler and/or condenser stages. 

Consider a ternary system being fractionated at total reflux and whose 
components have constant volatility (a) relative to a reference component, 
taken here to be the heaviest, or least volatile, component. Arranging the 
components in order of decreasing volatility, Component (1) is the light 
key, (3) is the heavy key or volatility reference component, and (2) is the 
component of intermediate volatility which may or may not display a 
concentration maximum at some intermediate point in the column. 

Also, the following terms are now defined. For a symmetrical feed, 

X(1,F) = X ( 3 , F )  (7)  

For an equimolar feed, 

X(1,F) = X ( 2 , F )  = X ( 3 , F )  = 1/3  (8) 

and, for a symmetrical separation, 

R(1) = 1 - R ( 3 )  (9) 

The Fenske (2) analysis is applied below to the liquid phase. At total 
reflux we may write 

and 

where N is the number of equilibrium stages and B refers to the bottom 
product composition. 
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GRIMMA 88 

Since the summation of the three mole fractions must equal unity, the 
following expression for X(2,N) can be derived: 

Equation (12) may be differentiated with respect to N and the result set 
equal to zero to find J, that value of N which maximizes X(2). 

J =  

where 

Equation (13) is also given by Asano and Fujita (I). 
If 0 < J < S(min), then an X(2,max) greater than both X(2,B) and 

X(2,D) exists. If J < 0 or J > S(min), the X(2,max) calculated by Eq. (1 5) ,  
which follows, is physically unreal. 

Substituting Eq. (1 3) into Eq. (1 2) with N = J: 

where the mole fractions sum to unity and 

(1 - C ) C - '  

CC (1 i M 5 2 )  M =  

Note that as Component (1) vanishes from the bottom product, X(2, 

Referring to Eqs. (10) and (1 l), we may also write, at X(2) = X(2,max), 
max) approaches unity for X(2,B) greater than zero. 

Substituting Eq. (1 3) into Eq. (1 7) yields the simple, interesting relation 
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CONCENTRATION MAXIMA IN TERNARY DISTILLATION 80 

In addition, it can be shown from the above relations that, at J, the rate of 
change of Component (1) composition with stage number is the negative of 
the rate of change of Component (3) composition with stage number. 

In a manner analogous to that by which Eq. (15) was derived, a 
companion equation to it may be written in terms of the top product 
compositions, X(1,D): 

X( 2,max) = I1 + M . X( 1 ,D)' . X( 3 ,D)I -' . X( 2,D)-'] - I  (1 9) 

where the sum of the mole fractions equals unity and the other terms are the 
same as for Eq. (15). Note that as Component (3) vanishes from the top 
product, X(2,max) approaches unity for X(2,D) greater than zero. 

Indeed, equations of the form of (1 5) and (1 9) are found to hold for any 
set of stage compositions, X(1,N). 

Writing Eq. ( 5 )  for component pairs (1,3) and (2,3) and substituting into 
Eq. (1 4), we find that 

* ( 0 5 C 5  I )  

and 

D R ( 2 )  = DR( I)' * D R ( 3 ) ' -  ' 
Other equivalent forms of Eqs. (1 5) and (1 9) are then 

1 + DR( 1)" * DR(3)'-' 
+ DR(l))'.(l + X(2,max) = 

where 
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00 GRIMMA 

where the X(1,F) refer to feed composition, and, from Eq. (4), 

X(2,max) = 11 + MQ[(l - R ( l ) ) C . ( I  - R(3)) ' -C + R ( 1 ) C . R ( 3 ) 1 - 7 t - '  
(23) 

Simplified forms of Eqs. (15 ) ,  (19), (22), and (23) result if Eqs. (7), (8), 
and/or (9) are assumed to hold. 

Inspection of the above relations shows that, for a fued value of C, the 
value of X(2,max) will increase (a) as the separation specifications are 
tightened, and (b) as the feed composition of either Component (1) or ( 3 )  
becomes large relative to the other or if the feed composition of (2) is made 
larger. For very tight separations, buildups ofX(2) can sometimes be rather 
dramatic (see Table 1). 

From Eqs. (5) and (1 3), the relative location ofX(2,max) in the column 
can be found, for fued R(1) and R(3), from 

J 

S(min) 

Figure 1 shows, for an equimolar feed and symmetrical separation, how 
X(2,max) depends on C and parameter R( 1 ) .  Figure 2 overlays lines of 
constant R(2) on Fig. 1, while Fig. 3 overlays lines of constant J/S(min) on 
Fig. 1. Physically unreal conditions are identified at the bottom of Fig. 1. 

In the development of the equations presented here, K(1) and X(1) are 
taken as continuous functions of stage number. In equilibrium stage-by- 
stage calculations, however, stage number assumes only integer values, 
with the result that Eqs. (1 S) ,  (1 9), (22), and (23) generally predict higher 
values of X(2,max) than are obtained from a corresponding stage-by-stage 
calculation. Table 1 gives a few illustrative comparisons between X(2,max) 
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FIG. 1. Effect of C and R( 1) on X(2,max) for symmetrical separations and equirnolar feed. 
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FIG. 2. Lines of constant R(2) for conditions of Fig. 1 .  
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1 

FIG. 3. Lines of constant J/S(min) for conditions of Fig. 1 
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as calculated from Eq. (23) and X(2,max) found from equilibrium stage 
calculations. Exact agreement is obtained when J i s  calculated to be a whole 
number. If it is desired to reproduce exactly the stage-by-stage prediction of 
X(Z,max), the following procedure is used: 

1) Calculate J by Eq. (13) 
2) If 0 < J < S(min), then a physically realX(2,max) occurs; if so, round 

3) Substitute this value of J into Eq. (1 2) 
the value of J to the nearest whole number 

We now consider a specific column at total reflw fractionating, over 
fixed S(min) stages, a system with constant a( 1,3) and a(2,3). From Eq. (6) 
we may write 

P = DR(3)/DR(l) (0 I P 5 1) ( 2 5 )  

In Fig. 1, lines of constant R( 1) are also lines of constant P. At P = 0, 

From Eqs. (21) and (25), 
S(min) = infinity and at P = 1, S(min) = 0. 

Further, the system is not assumed to be symmetrical. 
Combining Eqs. (4), (22), and (25), we get 

1 - R(1)(1 - p1-3 
(1 - R(1)(1 - P))'-= 

Equation (27) indicates that X(2,max) goes through a maximum as R( 1) 
changes at constant P, C, and feed composition. The value of R( 1) which 
gives this maximum value of X(2,max) is given by 

-' ] (28) 

The corresponding values for R(2) and R(3) are given by Eqs. (26) and 
(25), respectively, in conjunction with Eq. (4). The R(I)  are independent of 
feed composition. 

For a column fractionating a system with C = 0.5, the maximum value 
of X( 2,ma.x) occurs for a symmetrical separation between Components (1) 

R ( l )  =-[-L- 1 
stX(Z,max.max) c 1 - P 1 - P'-= 
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and (3) with Component (2), thus distributing half to the top product and 
half to the bottom product. 

Substituting Eq. (28) into Eq. (27) yields 

Combining Eqs. (4), (24), and (28), we derive 

J 
-In ( P )  

Figure 4 shows the relationships of R(l), R(2), and R(3) at X(2,max, 
max) as a function of C and P. For clarity, only one line (for P = 0) is 
shown for R(2). Some pertinent equations are: 

At P = 0, R(1) = 1 
R(2) = c 
R(3) = 0 
X(2,max,max) = 1 
R(1) = R(2) = R(3) = 0.5 At P =  1, 

Also, at a fixed value of P, R( 1) at C equals (1 - R(3) )  at ( 1  - C) 
and,R(2) at C equals ( 1  - R(2))  at (1 - C) 

As previously mentioned, the R(I) on Fig. 4 are independent of feed 
composition. To indicate some illustrative limits of physical reality, lines of 
J/S(min) equal to zero and unity are obtained by trial-and-error from Eq. 
(30) and drawn in Fig. 4; these lines are valid only for a symmetrical 
feed. 

From Eqs. (24) and (28) it is seen that the location of the Component 2 
concentration maximum rises higher in the column as the R(I) increase at 
fHed C, P, and feed composition. 

The approach used in this paper does not appear to be easily extended 
theoretically to partial reflux conditions used in actual column design and 
operation. However, since the DR(1) of nonkey components near typical 
optimum reflux ratios approximate the DR(I)  at total reflux (4), it may be 
useful, as a first approximation at least, to assume that such quantities as 
X(2,max),X(Z,rnax,max), and J/S(min) calculated at total reflux conditions 
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FIG. 4. Effect of C and P on R ( I )  at X(2,max,max). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



98 GRIMMA 

also apply at partial reflux. More specifically, we have had good success 
representing the results from rigorous computer calculations run on actual 
operating columns with Eq. (1 5). Even better correlations resulted when the 
constants “C” and “M” were not fured by relative volatility data directly, 
but rather were calculated from computer results and then used in Eq. (1 5 )  
to correlate concentration maxima. Assuming a bottoms composition of 
essentially pure Component (3) simplifies the calculations and graphical 
display of results. Also, the method of Asano and Fujita (1) may be 
appropriate for a particular problem. 

An illustrative example will hopefully clarify some of the concepts 
developed in this paper. 

A ternary system whose feed contains 75 mo196 Component (l), 1 mol% 
Component (2), and 24 mol% Component (3) has relative volatilities of 
a(1,3) = 2.0 and a(2,3) = 1.5. It is desired to recover 99.9% of Component 
(1) in the tops and 99.8% of Component (3) in the bottoms. At total reflux, 
and with the above specifications, calculate 

1) Whether or not a Component (2) liquid concentration maximum 

2) If so, what the maximum concentration is 
3) Where in the column the maximum occurs 
4) What the liquid concentrations are of the 2 key components at X(2, 

5 )  What the distribution ratio of Component (2) is 
6) What the maximum value of X(2,max) is for this column with this 

7) Where in the column this maximum occurs 

occurs 

max) 

feed 

From Eq. (14), C = In (1.5)/ln (2.0) = 0.585 R(l) = 0.999 and R(3) 
= 0.002. From Eq. (4), DR(1) = 999 and DR(3) = 0.002. Then, from Eq. 
(24), J/S(min) = 0.466, indicating that an X(2,max) does exist relative to 
both X(2,D) and X(2,B). 

From Eq. (16), M = 1.971, and from Eq. (23),X(2,max) = 0.1042. 
From the value of X(2,max) and from Eq. (18), X(1) = 0.5240 and 

X(3) = 0.3718 at the point of maximumX(2). 
From Eq. (5),  S(min) = 18.93, and from Eq. (24), J =  8.81. As a 

practical consideration regarding relative column location, it should be 
noted that J includes any reboiler stage, while S(min) includes any reboiler 
and condenser stages. 

From Eq. (21), DR(2) = 4.313 and R(2) = 0.812 from Eq. (4). 
From Eq. (25), P = 2.006 E - 6. Equation (28) then yields R( 1) at X(2, 

max, max) = 0.9969. Substituting this value in Eq. (27) gives the value of 
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X(2,max,max) as 0.1 177. Equation (29) could have been used directly to 
give the same result. From Eqs. (26) and (4), R(2) = 0.583, which is 
approximately the value of C .  

From Eq. (30 ) ,  J/S(min) = 0.380. The same answer is obtained by using 
Eq. (25) to get D R ( 3 )  = 0.00065 and then substituting this value into Eq. 
(24). 

SYMBOLS 

bottom product 
defined by Eq. (1 4) 
top product 
distribution ratio of Component I (Eq. 1) 
feed 
number of equilibrium stages, counting from the 
bottom, required to reach X(2) = X(2,max) or X(2, 
max ,max) 
vapor-liquid equilibrium ratio of Component I 
defined by Eq. (1 6) 
maximum value 
minimum value 
number of equilibrium stages, counting from the 
bottom 
defined by Eq. (25) 
defined by Eq. (22a) 
recovery fraction of Component I in tops (Eq. 2) 
defined by Eq. (5) 
liquid mole fraction of Component I 
volatility of Component I relative to Component L 
component designations 
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